# 192-Core Optimization Guide This guide explains how to optimize your audio processing pipeline to utilize 192 CPU cores at 100% capacity. ## 🚀 Quick Start 1. **Install dependencies:** ```bash pip install -r requirements_optimized.txt ``` 2. **Run the optimized pipeline:** ```bash ./run_optimized_192cores.sh ``` 3. **Monitor performance:** ```bash python monitor_performance.py ``` ## 📊 Key Optimizations Implemented ### 1. **Asynchronous Processing** - **aiohttp** for concurrent HTTP requests - **asyncio** for non-blocking I/O operations - **ProcessPoolExecutor** for CPU-intensive tasks ### 2. **Parallel Processing Strategy** ```python # Configuration for 192 cores NUM_CORES = 192 BATCH_SIZE = 32 # Increased for better throughput MAX_CONCURRENT_REQUESTS = 48 # 192/4 for optimal concurrency ``` ### 3. **Memory-Efficient Processing** - Streaming data processing - Chunked batch processing - Parallel file I/O operations ### 4. **System-Level Optimizations** - CPU governor set to performance mode - Increased file descriptor limits - Process priority optimization - Environment variables for thread optimization ## 🔧 Configuration Details ### Batch Processing - **Batch Size**: 32 samples per batch - **Concurrent Requests**: 48 simultaneous API calls - **Process Pool Workers**: 192 parallel processes ### Memory Management - **Chunk Size**: 1000 samples per chunk - **Streaming**: True for large datasets - **Parallel Sharding**: 50 shards for optimal I/O ### Network Optimization - **Connection Pool**: 48 concurrent connections - **Timeout**: 120 seconds per request - **Retry Logic**: Built-in error handling ## 📈 Performance Monitoring ### Real-time Monitoring ```bash python monitor_performance.py ``` ### Metrics Tracked - CPU utilization per core - Memory usage - Network I/O - Disk I/O - Load average ### Performance Targets - **CPU Utilization**: >90% across all cores - **Memory Usage**: <80% of available RAM - **Processing Rate**: >1000 samples/second ## 🛠️ Troubleshooting ### Low CPU Utilization (<50%) 1. **Increase batch size:** ```python BATCH_SIZE = 64 # or higher ``` 2. **Increase concurrent requests:** ```python MAX_CONCURRENT_REQUESTS = 96 # 192/2 ``` 3. **Check I/O bottlenecks:** - Monitor disk usage - Check network bandwidth - Verify API response times ### High Memory Usage (>90%) 1. **Reduce batch size:** ```python BATCH_SIZE = 16 # or lower ``` 2. **Enable streaming:** ```python ds = load_dataset(..., streaming=True) ``` 3. **Process in smaller chunks:** ```python CHUNK_SIZE = 500 # reduce from 1000 ``` ### Network Bottlenecks 1. **Reduce concurrent requests:** ```python MAX_CONCURRENT_REQUESTS = 24 # reduce from 48 ``` 2. **Increase timeout:** ```python timeout=aiohttp.ClientTimeout(total=300) ``` 3. **Use connection pooling:** ```python connector=aiohttp.TCPConnector(limit=MAX_CONCURRENT_REQUESTS) ``` ## 🔄 Advanced Optimizations ### 1. **Custom Process Pool Configuration** ```python # For CPU-intensive tasks with ProcessPoolExecutor( max_workers=NUM_CORES, mp_context=mp.get_context('spawn') ) as executor: results = executor.map(process_function, data) ``` ### 2. **Memory-Mapped Files** ```python import mmap def process_large_file(filename): with open(filename, 'rb') as f: with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as mm: # Process memory-mapped file pass ``` ### 3. **NUMA Optimization** (for multi-socket systems) ```bash # Bind processes to specific NUMA nodes numactl --cpunodebind=0 --membind=0 python script.py ``` ### 4. **GPU Acceleration** (if available) ```python # Use GPU for audio processing if available import torch if torch.cuda.is_available(): device = torch.device('cuda') # Move audio processing to GPU ``` ## 📊 Expected Performance ### Baseline Performance - **192 cores**: 100% utilization target - **Processing rate**: 1000-2000 samples/second - **Memory usage**: 60-80% of available RAM - **Network throughput**: 1-2 GB/s ### Optimization Targets - **CPU Efficiency**: >95% - **Memory Efficiency**: >85% - **I/O Efficiency**: >90% - **Network Efficiency**: >80% ## 🎯 Monitoring Commands ### System Resources ```bash # CPU usage htop -p $(pgrep -f "python.*batch_confirm") # Memory usage free -h # Network I/O iftop # Disk I/O iotop ``` ### Process Monitoring ```bash # Process tree pstree -p $(pgrep -f "python.*batch_confirm") # Resource usage per process ps aux | grep python ``` ## 🔧 System Requirements ### Minimum Requirements - **CPU**: 192 cores (any architecture) - **RAM**: 256 GB - **Storage**: 1 TB SSD - **Network**: 10 Gbps ### Recommended Requirements - **CPU**: 192 cores (AMD EPYC or Intel Xeon) - **RAM**: 512 GB - **Storage**: 2 TB NVMe SSD - **Network**: 25 Gbps ## 🚨 Important Notes 1. **Memory Management**: Monitor memory usage closely 2. **Network Limits**: Ensure sufficient bandwidth 3. **API Limits**: Check Vosk service capacity 4. **Storage I/O**: Use fast storage for temporary files 5. **Process Limits**: Increase system limits if needed ## 📞 Support If you encounter issues: 1. Check the performance logs 2. Monitor system resources 3. Adjust configuration parameters 4. Review the troubleshooting section For optimal performance, ensure your system meets the recommended requirements and follow the monitoring guidelines.