optimization
This commit is contained in:
243
vosk/test_files/OPTIMIZATION_GUIDE.md
Normal file
243
vosk/test_files/OPTIMIZATION_GUIDE.md
Normal file
@@ -0,0 +1,243 @@
|
||||
# 192-Core Optimization Guide
|
||||
|
||||
This guide explains how to optimize your audio processing pipeline to utilize 192 CPU cores at 100% capacity.
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
1. **Install dependencies:**
|
||||
```bash
|
||||
pip install -r requirements_optimized.txt
|
||||
```
|
||||
|
||||
2. **Run the optimized pipeline:**
|
||||
```bash
|
||||
./run_optimized_192cores.sh
|
||||
```
|
||||
|
||||
3. **Monitor performance:**
|
||||
```bash
|
||||
python monitor_performance.py
|
||||
```
|
||||
|
||||
## 📊 Key Optimizations Implemented
|
||||
|
||||
### 1. **Asynchronous Processing**
|
||||
- **aiohttp** for concurrent HTTP requests
|
||||
- **asyncio** for non-blocking I/O operations
|
||||
- **ProcessPoolExecutor** for CPU-intensive tasks
|
||||
|
||||
### 2. **Parallel Processing Strategy**
|
||||
```python
|
||||
# Configuration for 192 cores
|
||||
NUM_CORES = 192
|
||||
BATCH_SIZE = 32 # Increased for better throughput
|
||||
MAX_CONCURRENT_REQUESTS = 48 # 192/4 for optimal concurrency
|
||||
```
|
||||
|
||||
### 3. **Memory-Efficient Processing**
|
||||
- Streaming data processing
|
||||
- Chunked batch processing
|
||||
- Parallel file I/O operations
|
||||
|
||||
### 4. **System-Level Optimizations**
|
||||
- CPU governor set to performance mode
|
||||
- Increased file descriptor limits
|
||||
- Process priority optimization
|
||||
- Environment variables for thread optimization
|
||||
|
||||
## 🔧 Configuration Details
|
||||
|
||||
### Batch Processing
|
||||
- **Batch Size**: 32 samples per batch
|
||||
- **Concurrent Requests**: 48 simultaneous API calls
|
||||
- **Process Pool Workers**: 192 parallel processes
|
||||
|
||||
### Memory Management
|
||||
- **Chunk Size**: 1000 samples per chunk
|
||||
- **Streaming**: True for large datasets
|
||||
- **Parallel Sharding**: 50 shards for optimal I/O
|
||||
|
||||
### Network Optimization
|
||||
- **Connection Pool**: 48 concurrent connections
|
||||
- **Timeout**: 120 seconds per request
|
||||
- **Retry Logic**: Built-in error handling
|
||||
|
||||
## 📈 Performance Monitoring
|
||||
|
||||
### Real-time Monitoring
|
||||
```bash
|
||||
python monitor_performance.py
|
||||
```
|
||||
|
||||
### Metrics Tracked
|
||||
- CPU utilization per core
|
||||
- Memory usage
|
||||
- Network I/O
|
||||
- Disk I/O
|
||||
- Load average
|
||||
|
||||
### Performance Targets
|
||||
- **CPU Utilization**: >90% across all cores
|
||||
- **Memory Usage**: <80% of available RAM
|
||||
- **Processing Rate**: >1000 samples/second
|
||||
|
||||
## 🛠️ Troubleshooting
|
||||
|
||||
### Low CPU Utilization (<50%)
|
||||
1. **Increase batch size:**
|
||||
```python
|
||||
BATCH_SIZE = 64 # or higher
|
||||
```
|
||||
|
||||
2. **Increase concurrent requests:**
|
||||
```python
|
||||
MAX_CONCURRENT_REQUESTS = 96 # 192/2
|
||||
```
|
||||
|
||||
3. **Check I/O bottlenecks:**
|
||||
- Monitor disk usage
|
||||
- Check network bandwidth
|
||||
- Verify API response times
|
||||
|
||||
### High Memory Usage (>90%)
|
||||
1. **Reduce batch size:**
|
||||
```python
|
||||
BATCH_SIZE = 16 # or lower
|
||||
```
|
||||
|
||||
2. **Enable streaming:**
|
||||
```python
|
||||
ds = load_dataset(..., streaming=True)
|
||||
```
|
||||
|
||||
3. **Process in smaller chunks:**
|
||||
```python
|
||||
CHUNK_SIZE = 500 # reduce from 1000
|
||||
```
|
||||
|
||||
### Network Bottlenecks
|
||||
1. **Reduce concurrent requests:**
|
||||
```python
|
||||
MAX_CONCURRENT_REQUESTS = 24 # reduce from 48
|
||||
```
|
||||
|
||||
2. **Increase timeout:**
|
||||
```python
|
||||
timeout=aiohttp.ClientTimeout(total=300)
|
||||
```
|
||||
|
||||
3. **Use connection pooling:**
|
||||
```python
|
||||
connector=aiohttp.TCPConnector(limit=MAX_CONCURRENT_REQUESTS)
|
||||
```
|
||||
|
||||
## 🔄 Advanced Optimizations
|
||||
|
||||
### 1. **Custom Process Pool Configuration**
|
||||
```python
|
||||
# For CPU-intensive tasks
|
||||
with ProcessPoolExecutor(
|
||||
max_workers=NUM_CORES,
|
||||
mp_context=mp.get_context('spawn')
|
||||
) as executor:
|
||||
results = executor.map(process_function, data)
|
||||
```
|
||||
|
||||
### 2. **Memory-Mapped Files**
|
||||
```python
|
||||
import mmap
|
||||
|
||||
def process_large_file(filename):
|
||||
with open(filename, 'rb') as f:
|
||||
with mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as mm:
|
||||
# Process memory-mapped file
|
||||
pass
|
||||
```
|
||||
|
||||
### 3. **NUMA Optimization** (for multi-socket systems)
|
||||
```bash
|
||||
# Bind processes to specific NUMA nodes
|
||||
numactl --cpunodebind=0 --membind=0 python script.py
|
||||
```
|
||||
|
||||
### 4. **GPU Acceleration** (if available)
|
||||
```python
|
||||
# Use GPU for audio processing if available
|
||||
import torch
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device('cuda')
|
||||
# Move audio processing to GPU
|
||||
```
|
||||
|
||||
## 📊 Expected Performance
|
||||
|
||||
### Baseline Performance
|
||||
- **192 cores**: 100% utilization target
|
||||
- **Processing rate**: 1000-2000 samples/second
|
||||
- **Memory usage**: 60-80% of available RAM
|
||||
- **Network throughput**: 1-2 GB/s
|
||||
|
||||
### Optimization Targets
|
||||
- **CPU Efficiency**: >95%
|
||||
- **Memory Efficiency**: >85%
|
||||
- **I/O Efficiency**: >90%
|
||||
- **Network Efficiency**: >80%
|
||||
|
||||
## 🎯 Monitoring Commands
|
||||
|
||||
### System Resources
|
||||
```bash
|
||||
# CPU usage
|
||||
htop -p $(pgrep -f "python.*batch_confirm")
|
||||
|
||||
# Memory usage
|
||||
free -h
|
||||
|
||||
# Network I/O
|
||||
iftop
|
||||
|
||||
# Disk I/O
|
||||
iotop
|
||||
```
|
||||
|
||||
### Process Monitoring
|
||||
```bash
|
||||
# Process tree
|
||||
pstree -p $(pgrep -f "python.*batch_confirm")
|
||||
|
||||
# Resource usage per process
|
||||
ps aux | grep python
|
||||
```
|
||||
|
||||
## 🔧 System Requirements
|
||||
|
||||
### Minimum Requirements
|
||||
- **CPU**: 192 cores (any architecture)
|
||||
- **RAM**: 256 GB
|
||||
- **Storage**: 1 TB SSD
|
||||
- **Network**: 10 Gbps
|
||||
|
||||
### Recommended Requirements
|
||||
- **CPU**: 192 cores (AMD EPYC or Intel Xeon)
|
||||
- **RAM**: 512 GB
|
||||
- **Storage**: 2 TB NVMe SSD
|
||||
- **Network**: 25 Gbps
|
||||
|
||||
## 🚨 Important Notes
|
||||
|
||||
1. **Memory Management**: Monitor memory usage closely
|
||||
2. **Network Limits**: Ensure sufficient bandwidth
|
||||
3. **API Limits**: Check Vosk service capacity
|
||||
4. **Storage I/O**: Use fast storage for temporary files
|
||||
5. **Process Limits**: Increase system limits if needed
|
||||
|
||||
## 📞 Support
|
||||
|
||||
If you encounter issues:
|
||||
1. Check the performance logs
|
||||
2. Monitor system resources
|
||||
3. Adjust configuration parameters
|
||||
4. Review the troubleshooting section
|
||||
|
||||
For optimal performance, ensure your system meets the recommended requirements and follow the monitoring guidelines.
|
||||
314
vosk/test_files/batch_confirm_hf_optimized.py
Normal file
314
vosk/test_files/batch_confirm_hf_optimized.py
Normal file
@@ -0,0 +1,314 @@
|
||||
import asyncio
|
||||
import aiohttp
|
||||
import multiprocessing as mp
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
import soundfile as sf
|
||||
import requests
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
import json
|
||||
import pyarrow as pa
|
||||
import pyarrow.parquet as pq
|
||||
import numpy as np
|
||||
from huggingface_hub import HfApi, create_repo
|
||||
from datasets import load_dataset, Audio, Dataset
|
||||
import time
|
||||
from functools import partial
|
||||
import logging
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Configuration for 192 cores
|
||||
NUM_CORES = 192
|
||||
BATCH_SIZE = 32 # Increased batch size for better throughput
|
||||
MAX_CONCURRENT_REQUESTS = 48 # 192/4 for optimal concurrency
|
||||
CHUNK_SIZE = 1000 # Process data in chunks to manage memory
|
||||
|
||||
# Load the dataset with audio decoding
|
||||
print("Loading dataset...")
|
||||
ds = load_dataset(
|
||||
"Ashegh-Sad-Warrior/Persian_Common_Voice_17_0",
|
||||
split="validated",
|
||||
streaming=False
|
||||
).cast_column("audio", Audio(sampling_rate=16000))
|
||||
|
||||
output_dir = "confirmed_dataset"
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
API_URL = "http://localhost:5000/batch_confirm"
|
||||
|
||||
# Hugging Face configuration
|
||||
HF_DATASET_NAME = "dpr2000/persian-cv17-confirmed"
|
||||
HF_PRIVATE = True
|
||||
|
||||
def save_flac(audio_array, path):
|
||||
"""Save audio array as FLAC file"""
|
||||
sf.write(path, audio_array, 16000, format="FLAC")
|
||||
|
||||
def process_audio_chunk(audio_data):
|
||||
"""Process a single audio item - designed for multiprocessing"""
|
||||
audio, sentence = audio_data
|
||||
flac_path = f"temp_{hash(audio.tobytes())}.flac"
|
||||
save_flac(audio["array"], flac_path)
|
||||
return {
|
||||
'flac_path': flac_path,
|
||||
'sentence': sentence,
|
||||
'audio_array': audio["array"]
|
||||
}
|
||||
|
||||
async def send_batch_request(session, batch_data, batch_id):
|
||||
"""Send a single batch request asynchronously"""
|
||||
files = {}
|
||||
references = []
|
||||
temp_flacs = []
|
||||
audio_arrays = []
|
||||
|
||||
for j, item in enumerate(batch_data):
|
||||
files[f"audio{j}"] = open(item['flac_path'], "rb")
|
||||
references.append(item['sentence'])
|
||||
temp_flacs.append(item['flac_path'])
|
||||
audio_arrays.append(item['audio_array'])
|
||||
|
||||
data = {"references": json.dumps(references)}
|
||||
|
||||
try:
|
||||
async with session.post(API_URL, data=data, files=files, timeout=aiohttp.ClientTimeout(total=120)) as response:
|
||||
if response.status == 200:
|
||||
resp_json = await response.json()
|
||||
if "results" in resp_json:
|
||||
results = resp_json["results"]
|
||||
else:
|
||||
logger.warning(f"Batch {batch_id} failed: 'results' key missing")
|
||||
results = [None] * len(references)
|
||||
else:
|
||||
logger.error(f"Batch {batch_id} failed: HTTP {response.status}")
|
||||
results = [None] * len(references)
|
||||
except Exception as e:
|
||||
logger.error(f"Batch {batch_id} failed: {e}")
|
||||
results = [None] * len(references)
|
||||
finally:
|
||||
# Clean up files
|
||||
for f in files.values():
|
||||
f.close()
|
||||
for flac_path in temp_flacs:
|
||||
try:
|
||||
os.remove(flac_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
# Process results
|
||||
confirmed_items = []
|
||||
for j, result in enumerate(results):
|
||||
if result and result.get("confirmed"):
|
||||
confirmed_items.append({
|
||||
"audio": audio_arrays[j],
|
||||
"transcription": references[j]
|
||||
})
|
||||
|
||||
return confirmed_items
|
||||
|
||||
async def process_dataset_async():
|
||||
"""Main async processing function"""
|
||||
confirmed = []
|
||||
|
||||
# Prepare all audio data first using multiprocessing
|
||||
print("Preparing audio data with multiprocessing...")
|
||||
audio_data = [(ds[i]["audio"], ds[i]["sentence"]) for i in range(len(ds))]
|
||||
|
||||
# Use ProcessPoolExecutor for CPU-intensive audio processing
|
||||
with ProcessPoolExecutor(max_workers=NUM_CORES) as executor:
|
||||
processed_audio = list(tqdm(
|
||||
executor.map(process_audio_chunk, audio_data),
|
||||
total=len(audio_data),
|
||||
desc="Processing audio files"
|
||||
))
|
||||
|
||||
# Create batches
|
||||
batches = []
|
||||
for i in range(0, len(processed_audio), BATCH_SIZE):
|
||||
batch = processed_audio[i:i+BATCH_SIZE]
|
||||
batches.append((batch, i // BATCH_SIZE))
|
||||
|
||||
print(f"Processing {len(batches)} batches with {MAX_CONCURRENT_REQUESTS} concurrent requests...")
|
||||
|
||||
# Process batches asynchronously
|
||||
async with aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(limit=MAX_CONCURRENT_REQUESTS),
|
||||
timeout=aiohttp.ClientTimeout(total=300)
|
||||
) as session:
|
||||
tasks = []
|
||||
for batch_data, batch_id in batches:
|
||||
task = send_batch_request(session, batch_data, batch_id)
|
||||
tasks.append(task)
|
||||
|
||||
# Process in chunks to avoid overwhelming the system
|
||||
chunk_size = MAX_CONCURRENT_REQUESTS
|
||||
for i in range(0, len(tasks), chunk_size):
|
||||
chunk_tasks = tasks[i:i+chunk_size]
|
||||
results = await asyncio.gather(*chunk_tasks, return_exceptions=True)
|
||||
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
logger.error(f"Task failed: {result}")
|
||||
else:
|
||||
confirmed.extend(result)
|
||||
|
||||
print(f"Processed {min(i+chunk_size, len(tasks))}/{len(tasks)} batches, confirmed: {len(confirmed)}")
|
||||
|
||||
return confirmed
|
||||
|
||||
def save_confirmed_data_parallel(confirmed):
|
||||
"""Save confirmed data using parallel processing"""
|
||||
if not confirmed:
|
||||
print("❌ No confirmed samples to save")
|
||||
return
|
||||
|
||||
print(f"\n🔄 Saving {len(confirmed)} confirmed samples...")
|
||||
|
||||
def extract_minimal(example):
|
||||
"""Convert audio to int16 format"""
|
||||
audio_float32 = np.array(example["audio"], dtype=np.float32)
|
||||
audio_float32 = np.clip(audio_float32, -1.0, 1.0)
|
||||
audio_int16 = (audio_float32 * 32767).astype(np.int16)
|
||||
return {
|
||||
"audio": audio_int16.tobytes(),
|
||||
"text": example["transcription"]
|
||||
}
|
||||
|
||||
# Create dataset from confirmed samples
|
||||
confirmed_dataset = Dataset.from_list(confirmed)
|
||||
confirmed_dataset = confirmed_dataset.map(
|
||||
extract_minimal,
|
||||
remove_columns=confirmed_dataset.column_names,
|
||||
num_proc=NUM_CORES # Use all cores for dataset processing
|
||||
)
|
||||
|
||||
# Optimize sharding for parallel writing
|
||||
num_shards = min(50, len(confirmed)) # More shards for better parallelization
|
||||
shard_size = len(confirmed_dataset) // num_shards + 1
|
||||
|
||||
def write_shard(shard_info):
|
||||
"""Write a single shard - designed for multiprocessing"""
|
||||
i, start, end = shard_info
|
||||
if start >= len(confirmed_dataset):
|
||||
return None
|
||||
|
||||
shard = confirmed_dataset.select(range(start, end))
|
||||
table = pa.Table.from_pandas(shard.to_pandas())
|
||||
|
||||
shard_path = os.path.join(output_dir, f"confirmed_shard_{i:03}.parquet")
|
||||
|
||||
pq.write_table(
|
||||
table,
|
||||
shard_path,
|
||||
compression="zstd",
|
||||
compression_level=22,
|
||||
use_dictionary=True,
|
||||
version="2.6"
|
||||
)
|
||||
|
||||
return f"Shard {i+1}: {len(shard)} samples saved to {shard_path}"
|
||||
|
||||
# Prepare shard information
|
||||
shard_info = []
|
||||
for i in range(num_shards):
|
||||
start = i * shard_size
|
||||
end = min(len(confirmed_dataset), (i + 1) * shard_size)
|
||||
shard_info.append((i, start, end))
|
||||
|
||||
# Write shards in parallel
|
||||
print(f"Writing {num_shards} shards in parallel...")
|
||||
with ProcessPoolExecutor(max_workers=NUM_CORES) as executor:
|
||||
results = list(tqdm(
|
||||
executor.map(write_shard, shard_info),
|
||||
total=len(shard_info),
|
||||
desc="Writing shards"
|
||||
))
|
||||
|
||||
# Print results
|
||||
for result in results:
|
||||
if result:
|
||||
print(f"🔹 {result}")
|
||||
|
||||
print(f"\n✅ All confirmed data saved in {num_shards} shards in `{output_dir}/`")
|
||||
|
||||
return num_shards
|
||||
|
||||
async def upload_to_hf(num_shards):
|
||||
"""Upload to Hugging Face Hub"""
|
||||
print(f"\n🚀 Pushing dataset to Hugging Face Hub as '{HF_DATASET_NAME}'...")
|
||||
try:
|
||||
api = HfApi(token=os.getenv("HF_TOKEN"))
|
||||
|
||||
# Create repository
|
||||
try:
|
||||
create_repo(
|
||||
repo_id=HF_DATASET_NAME,
|
||||
repo_type="dataset",
|
||||
private=HF_PRIVATE,
|
||||
exist_ok=True
|
||||
)
|
||||
print(f"✅ Repository '{HF_DATASET_NAME}' created/verified")
|
||||
except Exception as e:
|
||||
print(f"⚠️ Repository creation failed: {e}")
|
||||
return
|
||||
|
||||
# Create dataset info
|
||||
dataset_info = {
|
||||
"dataset_name": HF_DATASET_NAME,
|
||||
"description": "Persian Common Voice confirmed samples for Whisper fine-tuning",
|
||||
"total_samples": len(confirmed),
|
||||
"num_shards": num_shards,
|
||||
"audio_format": "int16 PCM, 16kHz",
|
||||
"columns": ["audio", "text"],
|
||||
"source_dataset": "Ashegh-Sad-Warrior/Persian_Common_Voice_17_0",
|
||||
"processing": "Vosk API batch confirmation (optimized for 192 cores)"
|
||||
}
|
||||
|
||||
info_path = os.path.join(output_dir, "dataset_info.json")
|
||||
with open(info_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(dataset_info, f, indent=2, ensure_ascii=False)
|
||||
|
||||
# Upload folder
|
||||
api.upload_folder(
|
||||
folder_path=output_dir,
|
||||
repo_id=HF_DATASET_NAME,
|
||||
repo_type="dataset",
|
||||
)
|
||||
|
||||
print(f"🎉 Dataset successfully pushed to: https://huggingface.co/datasets/{HF_DATASET_NAME}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to push to Hugging Face: {e}")
|
||||
|
||||
async def main():
|
||||
"""Main function"""
|
||||
start_time = time.time()
|
||||
|
||||
print(f"🚀 Starting optimized processing with {NUM_CORES} cores")
|
||||
print(f"📊 Dataset size: {len(ds)} samples")
|
||||
print(f"⚙️ Batch size: {BATCH_SIZE}")
|
||||
print(f"🔄 Max concurrent requests: {MAX_CONCURRENT_REQUESTS}")
|
||||
|
||||
# Process dataset
|
||||
confirmed = await process_dataset_async()
|
||||
|
||||
# Save data
|
||||
num_shards = save_confirmed_data_parallel(confirmed)
|
||||
|
||||
# Upload to HF
|
||||
await upload_to_hf(num_shards)
|
||||
|
||||
end_time = time.time()
|
||||
print(f"\n⏱️ Total processing time: {end_time - start_time:.2f} seconds")
|
||||
print(f"📈 Processing rate: {len(ds) / (end_time - start_time):.2f} samples/second")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Set multiprocessing start method for better performance
|
||||
mp.set_start_method('spawn', force=True)
|
||||
|
||||
# Run the async main function
|
||||
asyncio.run(main())
|
||||
214
vosk/test_files/monitor_performance.py
Normal file
214
vosk/test_files/monitor_performance.py
Normal file
@@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Performance monitoring script for tracking CPU utilization during processing.
|
||||
Run this in a separate terminal while your main processing script is running.
|
||||
"""
|
||||
|
||||
import psutil
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
import threading
|
||||
import json
|
||||
import os
|
||||
|
||||
class PerformanceMonitor:
|
||||
def __init__(self, log_file="performance_log.json"):
|
||||
self.log_file = log_file
|
||||
self.monitoring = False
|
||||
self.data = {
|
||||
'timestamps': [],
|
||||
'cpu_percent': [],
|
||||
'memory_percent': [],
|
||||
'cpu_count': [],
|
||||
'load_average': [],
|
||||
'network_io': [],
|
||||
'disk_io': []
|
||||
}
|
||||
|
||||
def start_monitoring(self):
|
||||
"""Start monitoring in a separate thread"""
|
||||
self.monitoring = True
|
||||
self.monitor_thread = threading.Thread(target=self._monitor_loop)
|
||||
self.monitor_thread.daemon = True
|
||||
self.monitor_thread.start()
|
||||
print("🚀 Performance monitoring started...")
|
||||
|
||||
def stop_monitoring(self):
|
||||
"""Stop monitoring"""
|
||||
self.monitoring = False
|
||||
if hasattr(self, 'monitor_thread'):
|
||||
self.monitor_thread.join()
|
||||
print("⏹️ Performance monitoring stopped.")
|
||||
|
||||
def _monitor_loop(self):
|
||||
"""Main monitoring loop"""
|
||||
while self.monitoring:
|
||||
try:
|
||||
# CPU usage
|
||||
cpu_percent = psutil.cpu_percent(interval=1, percpu=True)
|
||||
cpu_avg = np.mean(cpu_percent)
|
||||
|
||||
# Memory usage
|
||||
memory = psutil.virtual_memory()
|
||||
|
||||
# Load average
|
||||
load_avg = psutil.getloadavg()
|
||||
|
||||
# Network I/O
|
||||
net_io = psutil.net_io_counters()
|
||||
|
||||
# Disk I/O
|
||||
disk_io = psutil.disk_io_counters()
|
||||
|
||||
# Store data
|
||||
timestamp = datetime.now().isoformat()
|
||||
self.data['timestamps'].append(timestamp)
|
||||
self.data['cpu_percent'].append(cpu_percent)
|
||||
self.data['memory_percent'].append(memory.percent)
|
||||
self.data['cpu_count'].append(len(cpu_percent))
|
||||
self.data['load_average'].append(load_avg)
|
||||
self.data['network_io'].append({
|
||||
'bytes_sent': net_io.bytes_sent,
|
||||
'bytes_recv': net_io.bytes_recv
|
||||
})
|
||||
self.data['disk_io'].append({
|
||||
'read_bytes': disk_io.read_bytes,
|
||||
'write_bytes': disk_io.write_bytes
|
||||
})
|
||||
|
||||
# Print current stats
|
||||
print(f"\r📊 CPU: {cpu_avg:.1f}% | Memory: {memory.percent:.1f}% | Load: {load_avg[0]:.2f}", end='')
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n❌ Monitoring error: {e}")
|
||||
|
||||
def save_data(self):
|
||||
"""Save monitoring data to file"""
|
||||
with open(self.log_file, 'w') as f:
|
||||
json.dump(self.data, f, indent=2)
|
||||
print(f"\n💾 Performance data saved to {self.log_file}")
|
||||
|
||||
def plot_performance(self):
|
||||
"""Create performance plots"""
|
||||
if not self.data['timestamps']:
|
||||
print("❌ No data to plot")
|
||||
return
|
||||
|
||||
# Convert timestamps to relative time
|
||||
start_time = datetime.fromisoformat(self.data['timestamps'][0])
|
||||
relative_times = [(datetime.fromisoformat(ts) - start_time).total_seconds()
|
||||
for ts in self.data['timestamps']]
|
||||
|
||||
# Create subplots
|
||||
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))
|
||||
|
||||
# CPU usage
|
||||
cpu_data = np.array(self.data['cpu_percent'])
|
||||
ax1.plot(relative_times, np.mean(cpu_data, axis=1), label='Average CPU %')
|
||||
ax1.fill_between(relative_times, np.min(cpu_data, axis=1), np.max(cpu_data, axis=1), alpha=0.3)
|
||||
ax1.set_title('CPU Utilization')
|
||||
ax1.set_ylabel('CPU %')
|
||||
ax1.grid(True)
|
||||
ax1.legend()
|
||||
|
||||
# Memory usage
|
||||
ax2.plot(relative_times, self.data['memory_percent'], label='Memory %')
|
||||
ax2.set_title('Memory Utilization')
|
||||
ax2.set_ylabel('Memory %')
|
||||
ax2.grid(True)
|
||||
ax2.legend()
|
||||
|
||||
# Load average
|
||||
load_data = np.array(self.data['load_average'])
|
||||
ax3.plot(relative_times, load_data[:, 0], label='1min')
|
||||
ax3.plot(relative_times, load_data[:, 1], label='5min')
|
||||
ax3.plot(relative_times, load_data[:, 2], label='15min')
|
||||
ax3.set_title('System Load Average')
|
||||
ax3.set_ylabel('Load')
|
||||
ax3.grid(True)
|
||||
ax3.legend()
|
||||
|
||||
# Network I/O
|
||||
net_data = self.data['network_io']
|
||||
bytes_sent = [d['bytes_sent'] for d in net_data]
|
||||
bytes_recv = [d['bytes_recv'] for d in net_data]
|
||||
ax4.plot(relative_times, bytes_sent, label='Bytes Sent')
|
||||
ax4.plot(relative_times, bytes_recv, label='Bytes Received')
|
||||
ax4.set_title('Network I/O')
|
||||
ax4.set_ylabel('Bytes')
|
||||
ax4.grid(True)
|
||||
ax4.legend()
|
||||
|
||||
plt.tight_layout()
|
||||
plt.savefig('performance_plot.png', dpi=300, bbox_inches='tight')
|
||||
print("📈 Performance plot saved as 'performance_plot.png'")
|
||||
|
||||
def print_summary(self):
|
||||
"""Print performance summary"""
|
||||
if not self.data['timestamps']:
|
||||
print("❌ No data available")
|
||||
return
|
||||
|
||||
cpu_data = np.array(self.data['cpu_percent'])
|
||||
memory_data = np.array(self.data['memory_percent'])
|
||||
|
||||
print("\n" + "="*50)
|
||||
print("📊 PERFORMANCE SUMMARY")
|
||||
print("="*50)
|
||||
print(f"📈 Monitoring duration: {len(self.data['timestamps'])} samples")
|
||||
print(f"🖥️ CPU cores: {self.data['cpu_count'][0]}")
|
||||
print(f"⚡ Average CPU usage: {np.mean(cpu_data):.1f}%")
|
||||
print(f"🔥 Peak CPU usage: {np.max(cpu_data):.1f}%")
|
||||
print(f"💾 Average memory usage: {np.mean(memory_data):.1f}%")
|
||||
print(f"📊 Peak memory usage: {np.max(memory_data):.1f}%")
|
||||
|
||||
# Calculate CPU utilization per core
|
||||
core_utilization = np.mean(cpu_data, axis=0)
|
||||
print(f"\n🔧 Per-core CPU utilization:")
|
||||
for i, util in enumerate(core_utilization):
|
||||
print(f" Core {i+1:2d}: {util:5.1f}%")
|
||||
|
||||
# Calculate efficiency
|
||||
total_cpu_potential = len(core_utilization) * 100
|
||||
actual_cpu_usage = np.sum(core_utilization)
|
||||
efficiency = (actual_cpu_usage / total_cpu_potential) * 100
|
||||
print(f"\n🎯 CPU Efficiency: {efficiency:.1f}%")
|
||||
|
||||
if efficiency < 50:
|
||||
print("⚠️ Low CPU utilization detected!")
|
||||
print("💡 Consider:")
|
||||
print(" - Increasing batch sizes")
|
||||
print(" - Using more concurrent processes")
|
||||
print(" - Optimizing I/O operations")
|
||||
elif efficiency > 90:
|
||||
print("✅ Excellent CPU utilization!")
|
||||
else:
|
||||
print("👍 Good CPU utilization")
|
||||
|
||||
def main():
|
||||
"""Main function"""
|
||||
print("🔍 Performance Monitor for 192-core system")
|
||||
print("Press Ctrl+C to stop monitoring and generate report")
|
||||
|
||||
monitor = PerformanceMonitor()
|
||||
|
||||
try:
|
||||
monitor.start_monitoring()
|
||||
|
||||
# Keep running until interrupted
|
||||
while True:
|
||||
time.sleep(1)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n\n⏹️ Stopping monitoring...")
|
||||
monitor.stop_monitoring()
|
||||
|
||||
# Generate report
|
||||
monitor.save_data()
|
||||
monitor.plot_performance()
|
||||
monitor.print_summary()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
27
vosk/test_files/requirements_optimized.txt
Normal file
27
vosk/test_files/requirements_optimized.txt
Normal file
@@ -0,0 +1,27 @@
|
||||
# Core dependencies
|
||||
datasets>=2.14.0
|
||||
soundfile>=0.12.1
|
||||
requests>=2.31.0
|
||||
tqdm>=4.65.0
|
||||
pandas>=2.0.0
|
||||
pyarrow>=12.0.0
|
||||
numpy>=1.24.0
|
||||
huggingface_hub>=0.16.0
|
||||
|
||||
# Async and concurrent processing
|
||||
aiohttp>=3.8.0
|
||||
asyncio-throttle>=1.0.0
|
||||
|
||||
# Performance monitoring
|
||||
psutil>=5.9.0
|
||||
matplotlib>=3.7.0
|
||||
|
||||
# Vosk for transcription
|
||||
vosk>=0.3.45
|
||||
|
||||
# Flask for API (if using Flask version)
|
||||
flask>=2.3.0
|
||||
|
||||
# Additional optimizations
|
||||
uvloop>=0.17.0 # Faster event loop for asyncio
|
||||
orjson>=3.9.0 # Faster JSON processing
|
||||
100
vosk/test_files/run_optimized_192cores.sh
Executable file
100
vosk/test_files/run_optimized_192cores.sh
Executable file
@@ -0,0 +1,100 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Optimized setup script for 192-core processing
|
||||
# This script configures the system and runs the optimized processing pipeline
|
||||
|
||||
set -e
|
||||
|
||||
echo "🚀 Setting up optimized processing for 192 cores..."
|
||||
|
||||
# System optimizations
|
||||
echo "⚙️ Configuring system for high-performance processing..."
|
||||
|
||||
# Increase file descriptor limits
|
||||
echo "* Setting file descriptor limits..."
|
||||
ulimit -n 65536
|
||||
|
||||
# Set process priority
|
||||
echo "* Setting process priority..."
|
||||
renice -n -10 $$
|
||||
|
||||
# Configure CPU governor for performance
|
||||
echo "* Configuring CPU governor..."
|
||||
if command -v cpupower &> /dev/null; then
|
||||
sudo cpupower frequency-set -g performance
|
||||
fi
|
||||
|
||||
# Set environment variables for optimal performance
|
||||
export PYTHONUNBUFFERED=1
|
||||
export PYTHONOPTIMIZE=2
|
||||
export OMP_NUM_THREADS=192
|
||||
export MKL_NUM_THREADS=192
|
||||
export OPENBLAS_NUM_THREADS=192
|
||||
export VECLIB_MAXIMUM_THREADS=192
|
||||
export NUMEXPR_NUM_THREADS=192
|
||||
|
||||
# Install optimized dependencies
|
||||
echo "📦 Installing optimized dependencies..."
|
||||
pip install -r requirements_optimized.txt
|
||||
|
||||
# Check if Vosk service is running
|
||||
echo "🔍 Checking Vosk service status..."
|
||||
if ! curl -s http://localhost:5000/ > /dev/null; then
|
||||
echo "⚠️ Vosk service not running. Starting optimized service..."
|
||||
|
||||
# Start optimized Vosk service
|
||||
cd ../vosk_service
|
||||
export USE_ASYNC=true
|
||||
python app_optimized.py &
|
||||
VOSK_PID=$!
|
||||
echo "✅ Vosk service started with PID: $VOSK_PID"
|
||||
|
||||
# Wait for service to be ready
|
||||
echo "⏳ Waiting for service to be ready..."
|
||||
for i in {1..30}; do
|
||||
if curl -s http://localhost:5000/ > /dev/null; then
|
||||
echo "✅ Service is ready!"
|
||||
break
|
||||
fi
|
||||
sleep 1
|
||||
done
|
||||
else
|
||||
echo "✅ Vosk service is already running"
|
||||
fi
|
||||
|
||||
# Start performance monitoring in background
|
||||
echo "📊 Starting performance monitoring..."
|
||||
python monitor_performance.py &
|
||||
MONITOR_PID=$!
|
||||
echo "✅ Performance monitor started with PID: $MONITOR_PID"
|
||||
|
||||
# Function to cleanup on exit
|
||||
cleanup() {
|
||||
echo "🧹 Cleaning up..."
|
||||
if [ ! -z "$VOSK_PID" ]; then
|
||||
kill $VOSK_PID 2>/dev/null || true
|
||||
fi
|
||||
if [ ! -z "$MONITOR_PID" ]; then
|
||||
kill $MONITOR_PID 2>/dev/null || true
|
||||
fi
|
||||
echo "✅ Cleanup complete"
|
||||
}
|
||||
|
||||
# Set trap to cleanup on script exit
|
||||
trap cleanup EXIT
|
||||
|
||||
# Run the optimized processing
|
||||
echo "🎯 Starting optimized processing with 192 cores..."
|
||||
echo "📊 Configuration:"
|
||||
echo " - CPU cores: 192"
|
||||
echo " - Batch size: 32"
|
||||
echo " - Max concurrent requests: 48"
|
||||
echo " - Process pool workers: 192"
|
||||
echo ""
|
||||
|
||||
# Run the optimized script
|
||||
python batch_confirm_hf_optimized.py
|
||||
|
||||
echo "✅ Processing complete!"
|
||||
echo "📈 Check performance_plot.png for detailed performance analysis"
|
||||
echo "📊 Check performance_log.json for raw performance data"
|
||||
271
vosk/vosk_service/app_optimized.py
Normal file
271
vosk/vosk_service/app_optimized.py
Normal file
@@ -0,0 +1,271 @@
|
||||
from flask import Flask, request, jsonify
|
||||
from vosk import Model, KaldiRecognizer
|
||||
import soundfile as sf
|
||||
import io
|
||||
import os
|
||||
import json
|
||||
import numpy as np
|
||||
from multiprocessing import Process, Queue, Pool, cpu_count
|
||||
import difflib
|
||||
import asyncio
|
||||
import aiohttp
|
||||
from aiohttp import web
|
||||
import logging
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
import time
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Configuration for high-performance processing
|
||||
NUM_WORKERS = 192 # Use all available cores
|
||||
BATCH_SIZE = 32
|
||||
MAX_CONCURRENT_PROCESSES = 48
|
||||
|
||||
MODEL_PATH = "/app/model"
|
||||
|
||||
# Global model instance (shared across processes)
|
||||
model = None
|
||||
|
||||
def load_model():
|
||||
"""Load the Vosk model"""
|
||||
global model
|
||||
print(f"Checking for model at: {MODEL_PATH}")
|
||||
if os.path.exists(MODEL_PATH):
|
||||
print(f"Model directory exists at {MODEL_PATH}")
|
||||
print(f"Contents: {os.listdir(MODEL_PATH)}")
|
||||
try:
|
||||
model = Model(MODEL_PATH)
|
||||
print("Model loaded successfully!")
|
||||
return model
|
||||
except Exception as e:
|
||||
print(f"Error loading model: {e}")
|
||||
raise RuntimeError(f"Failed to load Vosk model: {e}")
|
||||
else:
|
||||
print(f"Model directory not found at {MODEL_PATH}")
|
||||
raise RuntimeError(f"Vosk model not found at {MODEL_PATH}. Please download and mount a model.")
|
||||
|
||||
def similarity(a, b):
|
||||
"""Calculate similarity between two strings"""
|
||||
return difflib.SequenceMatcher(None, a, b).ratio()
|
||||
|
||||
def confirm_voice_process(args):
|
||||
"""Process a single audio file in a separate process"""
|
||||
audio_bytes, reference_text, samplerate = args
|
||||
|
||||
try:
|
||||
data, _ = sf.read(io.BytesIO(audio_bytes))
|
||||
if len(data.shape) > 1:
|
||||
data = data[:, 0]
|
||||
if data.dtype != np.int16:
|
||||
data = (data * 32767).astype(np.int16)
|
||||
|
||||
# Create recognizer in this process
|
||||
local_model = Model(MODEL_PATH)
|
||||
recognizer = KaldiRecognizer(local_model, samplerate)
|
||||
recognizer.AcceptWaveform(data.tobytes())
|
||||
result = recognizer.Result()
|
||||
text = json.loads(result).get('text', '')
|
||||
sim = similarity(text, reference_text)
|
||||
|
||||
return {
|
||||
'transcription': text,
|
||||
'similarity': sim,
|
||||
'confirmed': sim > 0.2
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing audio: {e}")
|
||||
return {
|
||||
'transcription': '',
|
||||
'similarity': 0.0,
|
||||
'confirmed': False
|
||||
}
|
||||
|
||||
def process_batch_parallel(audio_files, references):
|
||||
"""Process a batch of audio files using parallel processing"""
|
||||
# Prepare data for parallel processing
|
||||
samplerates = []
|
||||
for audio_bytes in audio_files:
|
||||
data, samplerate = sf.read(io.BytesIO(audio_bytes))
|
||||
samplerates.append(samplerate)
|
||||
|
||||
# Prepare arguments for parallel processing
|
||||
process_args = [
|
||||
(audio_bytes, reference_text, samplerate)
|
||||
for audio_bytes, reference_text, samplerate in zip(audio_files, references, samplerates)
|
||||
]
|
||||
|
||||
# Use ProcessPoolExecutor for parallel processing
|
||||
with ProcessPoolExecutor(max_workers=MAX_CONCURRENT_PROCESSES) as executor:
|
||||
results = list(executor.map(confirm_voice_process, process_args))
|
||||
|
||||
return results
|
||||
|
||||
# Flask app for backward compatibility
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.route('/', methods=['GET'])
|
||||
def health_check():
|
||||
return jsonify({'status': 'ok', 'service': 'vosk-transcription-api', 'model': 'persian'})
|
||||
|
||||
@app.route('/batch_confirm', methods=['POST'])
|
||||
def batch_confirm():
|
||||
"""Handle batch confirmation requests"""
|
||||
start_time = time.time()
|
||||
|
||||
# Parse request
|
||||
references = request.form.get('references')
|
||||
if not references:
|
||||
return jsonify({'error': 'Missing references'}), 400
|
||||
try:
|
||||
references = json.loads(references)
|
||||
except Exception:
|
||||
return jsonify({'error': 'Invalid references JSON'}), 400
|
||||
|
||||
# Get audio files
|
||||
audio_files = []
|
||||
for i in range(len(references)):
|
||||
audio_file = request.files.get(f'audio{i}')
|
||||
if not audio_file:
|
||||
return jsonify({'error': f'Missing audio file audio{i}'}), 400
|
||||
audio_files.append(audio_file.read())
|
||||
|
||||
# Process batch in parallel
|
||||
results = process_batch_parallel(audio_files, references)
|
||||
|
||||
processing_time = time.time() - start_time
|
||||
logger.info(f"Processed batch of {len(results)} files in {processing_time:.2f}s")
|
||||
|
||||
return jsonify({'results': results})
|
||||
|
||||
@app.route('/transcribe', methods=['POST'])
|
||||
def transcribe():
|
||||
"""Handle single transcription request"""
|
||||
if 'audio' not in request.files:
|
||||
return jsonify({'error': 'No audio file provided'}), 400
|
||||
|
||||
audio_file = request.files['audio']
|
||||
audio_bytes = audio_file.read()
|
||||
|
||||
try:
|
||||
data, samplerate = sf.read(io.BytesIO(audio_bytes))
|
||||
if len(data.shape) > 1:
|
||||
data = data[:, 0]
|
||||
if data.dtype != np.int16:
|
||||
data = (data * 32767).astype(np.int16)
|
||||
|
||||
recognizer = KaldiRecognizer(model, samplerate)
|
||||
recognizer.AcceptWaveform(data.tobytes())
|
||||
result = recognizer.Result()
|
||||
text = json.loads(result).get('text', '')
|
||||
|
||||
return jsonify({'transcription': text})
|
||||
except Exception as e:
|
||||
logger.error(f"Error in transcription: {e}")
|
||||
return jsonify({'error': str(e)}), 500
|
||||
|
||||
# Async version using aiohttp for better performance
|
||||
async def async_batch_confirm(request):
|
||||
"""Async version of batch confirmation"""
|
||||
start_time = time.time()
|
||||
|
||||
# Parse multipart data
|
||||
data = await request.post()
|
||||
|
||||
# Get references
|
||||
references_text = data.get('references')
|
||||
if not references_text:
|
||||
return web.json_response({'error': 'Missing references'}, status=400)
|
||||
|
||||
try:
|
||||
references = json.loads(references_text)
|
||||
except Exception:
|
||||
return web.json_response({'error': 'Invalid references JSON'}, status=400)
|
||||
|
||||
# Get audio files
|
||||
audio_files = []
|
||||
for i in range(len(references)):
|
||||
audio_file = data.get(f'audio{i}')
|
||||
if not audio_file:
|
||||
return web.json_response({'error': f'Missing audio file audio{i}'}, status=400)
|
||||
|
||||
audio_bytes = await audio_file.read()
|
||||
audio_files.append(audio_bytes)
|
||||
|
||||
# Process in thread pool to avoid blocking
|
||||
loop = asyncio.get_event_loop()
|
||||
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_PROCESSES) as executor:
|
||||
results = await loop.run_in_executor(
|
||||
executor,
|
||||
process_batch_parallel,
|
||||
audio_files,
|
||||
references
|
||||
)
|
||||
|
||||
processing_time = time.time() - start_time
|
||||
logger.info(f"Async processed batch of {len(results)} files in {processing_time:.2f}s")
|
||||
|
||||
return web.json_response({'results': results})
|
||||
|
||||
async def async_transcribe(request):
|
||||
"""Async version of single transcription"""
|
||||
data = await request.post()
|
||||
|
||||
if 'audio' not in data:
|
||||
return web.json_response({'error': 'No audio file provided'}, status=400)
|
||||
|
||||
audio_file = data['audio']
|
||||
audio_bytes = await audio_file.read()
|
||||
|
||||
try:
|
||||
data, samplerate = sf.read(io.BytesIO(audio_bytes))
|
||||
if len(data.shape) > 1:
|
||||
data = data[:, 0]
|
||||
if data.dtype != np.int16:
|
||||
data = (data * 32767).astype(np.int16)
|
||||
|
||||
recognizer = KaldiRecognizer(model, samplerate)
|
||||
recognizer.AcceptWaveform(data.tobytes())
|
||||
result = recognizer.Result()
|
||||
text = json.loads(result).get('text', '')
|
||||
|
||||
return web.json_response({'transcription': text})
|
||||
except Exception as e:
|
||||
logger.error(f"Error in async transcription: {e}")
|
||||
return web.json_response({'error': str(e)}, status=500)
|
||||
|
||||
async def health_check_async(request):
|
||||
"""Async health check"""
|
||||
return web.json_response({
|
||||
'status': 'ok',
|
||||
'service': 'vosk-transcription-api-async',
|
||||
'model': 'persian',
|
||||
'workers': MAX_CONCURRENT_PROCESSES
|
||||
})
|
||||
|
||||
def create_async_app():
|
||||
"""Create async aiohttp app"""
|
||||
app = web.Application()
|
||||
|
||||
# Add routes
|
||||
app.router.add_get('/', health_check_async)
|
||||
app.router.add_post('/batch_confirm', async_batch_confirm)
|
||||
app.router.add_post('/transcribe', async_transcribe)
|
||||
|
||||
return app
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load model
|
||||
load_model()
|
||||
|
||||
# Choose between Flask and aiohttp based on environment
|
||||
use_async = os.getenv('USE_ASYNC', 'false').lower() == 'true'
|
||||
|
||||
if use_async:
|
||||
# Run async version
|
||||
app = create_async_app()
|
||||
web.run_app(app, host='0.0.0.0', port=5000)
|
||||
else:
|
||||
# Run Flask version
|
||||
app.run(host='0.0.0.0', port=5000, threaded=True, processes=4)
|
||||
Reference in New Issue
Block a user