This commit is contained in:
alireza
2025-02-19 13:45:07 +03:30
parent 729ae0b8c7
commit 8940a7d7f9
6 changed files with 1225 additions and 0 deletions

337
load_tinystories.py Normal file
View File

@@ -0,0 +1,337 @@
from datasets import load_dataset
import numpy as np
from collections import Counter
import re
import pickle
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
class BiDict:
"""
Bidirectional dictionary for word-to-vector and vector-to-word mappings
"""
def __init__(self):
self.word_to_vec = {}
self.vec_to_word = {}
def __setitem__(self, word, vector):
self.word_to_vec[word] = vector
self.vec_to_word[vector] = word
def __getitem__(self, key):
# Try word_to_vec first, then vec_to_word
return self.word_to_vec.get(key) or self.vec_to_word.get(key)
def __len__(self):
return len(self.word_to_vec)
def items(self):
return self.word_to_vec.items()
def values(self):
return self.word_to_vec.values()
def load_tinystories():
"""
Load the TinyStories dataset from Hugging Face.
Returns the dataset object containing train and validation splits.
"""
ds = load_dataset("roneneldan/TinyStories")
return ds
def tokenize_with_punctuation(text):
"""
Split text into words and punctuation marks as separate tokens.
Preserves spaces between words but treats punctuation as separate tokens.
"""
# Define pattern to split on word boundaries but keep punctuation as tokens
# Using raw string to properly escape special characters
pattern = r'([.,!?;:"\'()\[\]{}]|\s+|[a-zA-Z0-9]+)'
tokens = re.findall(pattern, text.lower())
# Filter out empty strings and pure whitespace, but keep punctuation
return [token for token in tokens if token.strip() or token in '.,!?;:"\'()[]{}']
def get_vocabulary(stories, N=12):
"""
Create vocabulary from the given stories.
Returns a bidirectional dictionary mapping words and vectors.
"""
# Get all unique tokens across all stories
all_tokens = set()
for story in stories:
tokens = tokenize_with_punctuation(story)
all_tokens.update(tokens)
# Sort tokens for consistent encoding
unique_tokens = sorted(all_tokens)
# Create unique N-bit vectors
num_tokens = len(unique_tokens)
if num_tokens > 2**N:
raise ValueError(f"Vocabulary size ({num_tokens}) exceeds {N}-bit capacity ({2**N})")
# Generate all possible N-bit numbers
all_possible = list(range(2**N))
np.random.shuffle(all_possible)
# Create unique random binary numbers for each token
token_to_vector = BiDict()
for i, token in enumerate(unique_tokens):
binary = format(all_possible[i], f'0{N}b')
token_to_vector[token] = binary
return token_to_vector
def save_encodings(vocab, encoded_stories, stories, filename='encodings.pkl'):
"""Save the encodings and vocabulary to a pickle file"""
data = {
'vocabulary': vocab,
'encoded_stories': encoded_stories,
'original_stories': stories
}
with open(filename, 'wb') as f:
pickle.dump(data, f)
def load_encodings(filename='encodings.pkl'):
"""Load encodings from pickle file if it exists"""
if os.path.exists(filename):
with open(filename, 'rb') as f:
data = pickle.load(f)
return data['vocabulary'], data['encoded_stories'], data['original_stories']
return None, None, None
def encode_stories(n_stories=30, force_encode=False, N=12):
"""
Encode the first n stories into N-bit vectors.
If encodings exist and force_encode is False, load from file.
Otherwise, create new encodings and save them.
"""
if not force_encode:
vocab, encoded_stories, stories = load_encodings()
if vocab is not None:
print("Loaded existing encodings from file")
return vocab, encoded_stories, stories
ds = load_tinystories()
stories = [ds['train'][i]['text'] for i in range(n_stories)]
print(stories)
# Get vocabulary mapping with specified N
vocab = get_vocabulary(stories, N=N)
# Encode stories
encoded_stories = []
for story in stories:
tokens = tokenize_with_punctuation(story)
encoded_tokens = [vocab[token] for token in tokens]
encoded_stories.append(encoded_tokens)
# Save the encodings
save_encodings(vocab, encoded_stories, stories)
print("Created and saved new encodings")
return vocab, encoded_stories, stories
def get_word_sequences(encoded_stories, M=100, N=12):
"""
Get sequences of M consecutive words from encoded stories.
Each word is N bits long.
"""
M_N_sequences = []
# Process each story with progress bar
for story in tqdm(encoded_stories, desc="Generating sequences"):
# Only process if story has enough words
if len(story) >= M:
# Get groups of M words, shifting by 1 word each time
for i in range(len(story) - M + 1):
word_group = story[i:i + M]
# Convert words to bit array
bits = []
for word in word_group:
bits.extend([int(bit) for bit in word])
vector = np.array(bits).reshape(M * N, 1)
M_N_sequences.append(vector)
return np.array(M_N_sequences)
def sequence_to_words(sequence, N=12):
"""
Convert a sequence vector back into a list of N-bit words
"""
# Convert sequence to flat list of bits
bits = [str(int(bit[0])) for bit in sequence]
# Split into N-bit chunks
words = [''.join(bits[i:i + N]) for i in range(0, len(bits), N)]
return words
def calculate_energy(sequences):
"""
Calculate the energy of each sequence.
"""
energies = []
hamiltonian = 0
for seq in sequences:
energy = -seq.dot(seq.T)/2
hamiltonian += energy
energies.append(energy)
plt.semilogy(-np.linalg.eigvals(hamiltonian), ".")
plt.show()
return energies, hamiltonian
def retrieve_sequences(sequences, partial_sequence, vocab, W, M=10, N=12, temperature=1.0):
"""
Retrieve the most likely next word using Ising Hamiltonian with temperature.
Uses associative memory to retrieve the last word of the sequence.
"""
# Convert partial sequence to vector
partial_vec = np.array([int(bit) for bit in partial_sequence]).reshape(-1, 1)
# Get all possible words from vocabulary
possible_words = list(vocab.values())
# Calculate weights matrix (Hebbian learning)
# Calculate energies for all possible words
word_energies = []
for word in possible_words:
# Create complete sequence with this word
complete_sequence = partial_sequence + word
if len(complete_sequence) == M*N: # Ensure correct length
complete_vec = np.array([int(bit) for bit in complete_sequence]).reshape(M * N, 1)
# Calculate energy using Ising Hamiltonian
energy_matrix = complete_vec.T.dot(W).dot(complete_vec)
energy = -0.5 * float(energy_matrix[0, 0])
word_energies.append((word, energy))
# Sort by energy
word_energies.sort(key=lambda x: x[1])
# Normalize energies to prevent overflow
energies = np.array([e[1] for e in word_energies])
energies = energies - np.min(energies) # Shift to make minimum energy 0
energies = energies / np.max(energies) if np.max(energies) > 0 else energies # Scale to [0,1]
# Calculate probabilities with normalized energies
probabilities = np.exp(-energies/temperature)
probabilities = probabilities / np.sum(probabilities)
# Check for valid probabilities
if np.any(np.isnan(probabilities)):
# Fallback to uniform distribution if numerical issues occur
probabilities = np.ones(len(word_energies)) / len(word_energies)
selected_idx = np.random.choice(len(word_energies), p=probabilities)
best_word, min_energy = word_energies[selected_idx]
# Find the word corresponding to the binary vector
for word, vector in vocab.items():
if vector == best_word:
return word, best_word, min_energy
def predict_sequence(initial_sequence, vocab, sequences, W, D=10, M=100, N=12, temperature=1.0):
"""
Predict D words iteratively by sliding the window.
"""
current_tokens = initial_sequence.copy()
predictions = []
energies = []
# Add progress bar for predictions
for _ in tqdm(range(D), desc="Predicting words"):
# Convert current tokens to binary sequence
partial_sequence = ""
for token in current_tokens:
partial_sequence += vocab[token]
# Predict next word
predicted_word, _, energy = retrieve_sequences(
sequences,
partial_sequence,
vocab,
W=W,
M=M,
N=N,
temperature=temperature
)
predictions.append(predicted_word)
energies.append(energy)
# Slide window: remove first token and add predicted word
current_tokens = current_tokens[1:] + [predicted_word]
return predictions, energies
if __name__ == "__main__":
N = 13 # Define N as a constant
M = 10 # Define M as a constant
D = 3 # Number of words to predict
temperature = 1.0 # Increased temperature for more diversity
print("Loading and encoding stories...")
# Force new encoding to ensure consistency
vocab, encoded_stories, original_stories = encode_stories(force_encode=True, N=N)
print("\nGenerating training sequences...")
# Get sequences for training
sequences = get_word_sequences(encoded_stories=encoded_stories, M=M, N=N)
print(f"Number of training sequences: {len(sequences)}")
print(f"Sequence shape: {sequences[0].shape if len(sequences) > 0 else 'No sequences found'}")
# Get initial sequence from first story
story_tokens = tokenize_with_punctuation(original_stories[0])
_, W = calculate_energy(sequences)
# Make sure we have enough tokens for M=100
if len(story_tokens) >= M-1:
initial_tokens = story_tokens[:M-1]
# Predict next D words
predicted_words, energies = predict_sequence(
initial_tokens,
vocab,
sequences,
W=W,
D=D,
M=M,
N=N,
temperature=temperature
)
# Print results
print("\nOriginal sequence:")
print(" ".join(initial_tokens[-10:])) # Last 10 tokens of initial sequence
print("\nPredicted sequence:")
print(" ".join(predicted_words))
print("\nEnergies:")
print(energies)
print("\nActual next words:")
print(" ".join(story_tokens[M-1:M-1+D])) # Next D actual words
else:
print(f"Story too short. Needs at least {M-1} tokens, but has {len(story_tokens)}")
# # Print example
# print(f"Total vocabulary size: {len(vocab)}")
# print("\nExample encoding for first story:")
# print("Original:", original_stories[0])
# print("First few tokens and their encodings:")
# tokens = tokenize_with_punctuation(original_stories[0])
# for token, encoding in zip(tokens[:10], encoded_stories[0][:10]):
# print(f"'{token}' -> {encoding}")
# # Get statistics about vector usage
# total_unique_in_vocab = len(vocab)
# total_unique_used = len(set([vec for story in encoded_stories for vec in story]))
# total_vectors = sum(len(story) for story in encoded_stories)
# print(f"\nTotal unique vectors in vocabulary: {total_unique_in_vocab}")
# print(f"Total unique vectors used in stories: {total_unique_used}")
# print(f"Total word occurrences: {total_vectors}")
# print(encoded_stories[0])
# print(sequences)
# plt.imshow(energies[0])
# plt.show()